How Does NASA Test For Spacecraft Safety?
Inside an 80-foot-tall chamber on Lockheed Martin’s Denver-area campus, backgrounded by red-rock ridges, stands a hulking spacecraft. You have to crane your neck to see the top of the apparatus. At the bottom, wires spew from a porthole to snake up and down and away. The cylindrical structure flows into a duller, funnel-like cone, which tapers into a tower with rocket nozzles. Next to it, the blue scaffolds of an indoor crane resemble a launchpad gantry.
But this spacecraft isn’t going anywhere. It’s a copy of Orion, the NASA vehicle that will someday ferry crew and cargo beyond Earth’s orbit—to the moon, to Mars, to deep space. This Orion twin, which we shall call PseudOrion, is architecturally identical to the real thing, which is nearly 2,000 miles away in Florida.
It’s a lot safer there. Because here in Denver, teams of engineers are putting its doppelganger through hell, to probe its limits and ensure it won’t crack under pressure. Its sacrifice means Real Orion won’t have to endure that same strife and the potential ensuing damage.